Publikacje Katedry Funkcji Rzeczywistych

2014

  1. M. Filipczak, A. Bartoszewicz, A. Kowalski, M. Terepeta, On similarity between topologies, Central European Journal of Mathematics, 12(4), (2014),  str. 603-610.
  2. M. Filipczak, A. Bartoszewicz, E. Szymonik, Multigeometric sequences and Cantorvals, Central European Journal of Mathematics, 12(7), (2014), str. 1000-1007.
  3. J. Hejduk, R. Wiertelak, On the generalization of density topologies on the real line, Mathematica Slovaca, 64(5), (2014), str. 1267-1276.
  4. Gertruda Ivanova, Remarks on some modification of the Darboux property, Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations, 63, (2013), str. 91-100.
  5. G. Ivanova, E. Wagner-Bojakowska, On some subclasses of the family of Darboux Baire 1 functions, Opuscula Mathematica, 34,  no.4, (2014), str. 777-788.
  6. A. Karasińska, E. Wagner-Bojakowska, Microscopic and strongly microscopic sets on the plane. Fubini Theorem and Fubini property, Demonstratio Mathematica, 47, no. 3, (2014), str. 582-595.
  7. W. Wilczyński, A Boccuto, X Dmitriou, N. Papanastassiou, Modes of ideal continuity and the additive property in the Riesz space setting,Journal of Applied Analysis, 20, no. 1, (2014), str. 181-184.
  8. G. Horbaczewska, Microscopic sets with respect to sequences of functions, Tatra Mountains Mathematical Publications, 58, (2014), str. 137-144.
  9. G.  Ivanova, E. Wagner-Bojakowska, On some modification of Świątkowski property, Tatra Mountains Mathematical Publications, 58, (2014), str. 101-109.
  10. A. Karasińska, E. Wagner-Bojakowska, On some problem of Sierpiński and Ruziewicz concerning the superposition of measurable functions. Microscopic Hamel basis, Tatra Mountains Mathematical Publications, 58, (2014), str. 91-99.
  11. W. Wilczyński, Twórczość Stanisława Ruziewicza, Dzieje Matematyki Polskiej II, praca zbiorowa pod redakcją Witolda Więsława, Instytut Matematyczny Uniwersytetu Wrocławskiego, (2013), str. 239-245.
  12. W. Wilczyński, Prace Zygmunta Zahorskiego o pierwszej pochodnej, Dzieje Matematyki Polskiej II, praca zbiorowa pod redakcją Witolda Więsława, Instytut Matematyczny Uniwersytetu Wrocławskiego, (2013), str. 247-252.
  13. W. Wilczyński, Recenzja: Roman Duda, Matematycy XIX i XX wieku związani z Polską, Wydawnictwo Uniwersytetu Wrocławskiegoj, Wiadomości Matematyczna, (2014), str. 181-184.

2013

  1. M. Balcerzak, A. Bartoszewicz, M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous singular functions, Journal of Mathematical Analysis and Applications,407 (2013) str. 263-269.
  2. A. Bartoszewicz, M. Bienias, M. Filipczak, S. Głąb, Strong c-algebrability of strong Sierpiński–Zygmund,smooth nowhere analytic and other sets of functions, Journal of Mathematical Analysis and Applications, (2013).
  3. J. Hejduk, On the regularity of topologies in the family of sets having the Baire property, Filomat, 27 (7) (2013), str. 1291-1295.
  4. M. Górajska, W. Wilczyński, Density topology generated by the convergence everywhere except for a finite set, Demonstratio Mathematica, 1 (2013), 197-208.
  5. M. Górajska, J. Hejduk , Pointwise density topology with respect to admissible s-algebras, Tatra Mountains Mathematical Publications, 55 (2013),  str. 77-83.
  6. E. Wagner-Bojakowska, W. Wilczyński Convergence of sequences of measurable functions, Traditional and present-day topics in real analysis, Łódź University Press 2013.
  7. G. Horbaczewska, A. Karasińska, E. Wagner-Bojakowska Properties of the s-ideal of microscopic sets, Traditional and present-day topics in real analysis, Łódź University Press 2013.
  8. A. Bartoszewicz, M. Filipczak, F. Prus-Wiśniowski,  Topological and algebraic aspects of subsums of series, Traditional and present-day topics in real analysis, Łódź University Press 2013.
  9. M. Filipczak, M. Terepeta,  On y-density topologies on the real line and on the plane, Traditional and present-day topics in real analysis,  Łódź University Press 2013.
  10. M. Filipczak, T. Filipczak,  Density type topologies generated by functions. Properties of f-density, Traditional and present-day topics in real analysis, Łódź University Press 2013.
  11. J. Hejduk, R. Wiertelak, On the abstract density topologies generated by lower and almost lower density operators, Traditional and present-day topics in real analysis, Łódź University Press 2013.
  12. W. Wilczyński, Od Pitagorasa do Erdösa, Mistrz i uczeń. Archidiecezjalne Wydawnictwo Łódzkie  2013.

2012

  1. M. Filipczak, T. Filipczak, On {Delta}2 condition for density-type topologies generated by functions, Topology and its Applications 159, no. 7 (2012); 1838-1846.
  2. K. Flak, J. Hejduk, On topologies generated by some operators, Central European Journal of Mathematics 11(2) (2013); 349-356.
  3. G. Horbaczewska, Sparse sets on the plane and density points defined by families of sequences, Bulletin of the Australian Mathematical Society 86 (2012); 282-290.
  4. G. Horbaczewska, W. Wilczyński, A difference between the sets of ordinary and strong density points on the plane, Mathematica Slovaca 62, no. 4 (2012); 805-813.
  5. A. Karasińska, E. Wagner-Bojakowska, Homeomorphisms of linear and planar sets of the first category into microscopic sets, Topology and its Applications 159, no. 7 (2012); 1894-1898.
  6. J. Hejduk, A. Loranty, Remarks on the topologies in the Lebesgue measurable sets, Demonstratio Mathematica XLV, no. 3 (2012); 655-663.
  7. A. Kowalski, A. Bartoszewicz, The Stone representation of an atomic complete Boolean algebra is Marczewski-Burstin representable, Journal of Applied Analysis 18 (2012); 297-301.
  8. W. Wilczyński, On the Lebesgue density theorem, Journal of Applied Analysis 18 (2012); 275-281.
  9. S. Lindner, W. Wilczyński, On points of the regular density, Tatra Mountains Mathematical Publications 52 (2012); 9-17.
  10. J. Hejduk, On the abstract density topologies, Selected Papers of the 2010 International Conference and its Applications (2012); 79-85.
  11. W. Władysław, Generalized continuous convergence, Selected Papers of the 2010 International Conference and its Applications (2012); 184-188.

2011.

  1. A. Bartoszewicz, M. Filipczak, T. Natkaniec, On Smital properties, Topology and its Applications 158 (2011); 2066-2075.
  2. A. Bartoszewicz, M. Filipczak, T. Poreda, Densities generated by equivalent measures, Mathematica Slovaca 61 (2011), No. 5; 733-746.
  3. M. Filipczak, T. Filipczak, On {DELTA} 2 condition for density-type topologies generated by functions, Topology and its Applications (2011);
  4. G. Horbaczewska, On the density type topologies in higher dimensions, Bull. Aust. Math. Soc. 83 (2011); 158-170.
  5. G. Horbaczewska, Sparse sets on the plane and density points defined by families of sequences, Bull. Aust. Math. Soc. (2011)
  6. A. Karasińska, E. Wagner-Bojakowska, Homeomorphisms of linear and planar sets of the first category into microscopic sets, Topology and its Application (2011)
  7. C. Papachristodoulos, N. Papanastassiou, W. Wilczyński, p-q-convergence of sequences of measurable functions, Topology and its Applications 158 (2011); 1478-1492.
  8. W. Wilczyński, W. Wojdowski, A category {Psi}-density topology, Central European Journal of Mathematics 9(5) (2011); 1057-1066.
  9. M. Filipczak, M. Terepeta, On ({Delta}2) condition in density-type topologies, Demonstratio Mathematica; XLIV (2011) No 2; 423-432.
  10. M. Filipczak, T. Filipczak, On the comparison of density type topologies generated by functions, Real Anal. Exchange; Vol. 36(2), (2010/2011); 341-352.
  11. J. Hejduk, R. Wiertelak, Continuous functions in I(J)-density topologies, Real Anal. Exchange; Vol. 36(2), (2010/2011); 463-470.
  12. M. Lindner, S. Lindner, Characterizations of some subclasses of the first class of Baire, Real Anal. Exchange; Vol. 36(2), (2010/2011); 499-506.
  13. S Lindner, The regular density on the plane, Annales Universitatis Paedagogicae Cracoviensis, Studia Mathematica X (2011), 79-87,
  14. A. Boccuto, X. Dimitriou, N. Papanastassiou, W. Wilczyński, Ideal exhaustiveness, continuity and (a)-convergence for lattice group-valued functions, International Journal of Pure and Applied Mathematics; vol. 70 (2011) No. 2; 211-227.
  15. M. Filipczak, W. Wilczyński, Strict density topology on the plane. Measure case, Rend. Circ. Mat. Palermo, Vol. 57 (2010).
  16. R. Wiertelak, About I(J)-approximately continuous functions, Periodica Mathematica Hungarica; Vol. 63(1) (2011); 71-79.
  17. J. Hejduk, One more difference between measure and category, Tatra Mountains Mathematical Publications; 49 (2011); 9-15.
  18. T. Filipczak, W. Wojdowski, G. Horbaczewska, S. Lindner, A. Kierus, A. Loranty, On Some Generalizations of the Density Topology, Chapter 1 [in:] Filipczak M., Wagner-Bojakowska E. (eds) Real functions, density topology and related topics, Łódź University Press, Łódź (2011), 22-62.
  19. Z. Kominek, E. Łazarow, K. Rychert, J. Hejduk, K. Flak, A. Karasińska, W. Poreda, E. Wagner-Bojakowska, Special Subsets of the Real Line, Chapter 2 [in:] Filipczak M., Wagner-Bojakowska E. (eds) Real functions, density topology and related topics, Łódź University Press, Łódź (2011), 64-87.
  20. M. Balcerzak, A. Bartoszewicz, A. Kowalski, R. Ger, F. Prus-Wiśniowski, M. Turowska, R. Zduńczyk, Miscellaneous, Chapter 4 [in:] Filipczak M., Wagner-Bojakowska E. (eds) Real functions, density topology and related topics, Łódź University Press, Łódź (2011), 141-189.
  21. M. Filipczak.,E. Wagner-Bojakowska (eds) Real functions, density topology and related topics, Łódź University Press, Łódź (2011).

 

2010.

  1. G. Horbaczewska, On the density-type topologies in higher dimensions, Bull. Aust. Math. Soc.; (First published online 2010);
  2. A. Bartoszewicz, M. Filipczak, T. Poreda, On density with respect to equivalent measures, Demonstratio Mathematica; XLIII (2010) No 1; 21-28.
  3. W. Wilczyński, The set of points of discontinuity of I-approximately continuous functions, Demonstratio Mathematica; XLIII (2010) No 3; 539-544.
  4. K. Flak, E. Łazarow, The lattice generated by τ-quasicontinuous functions, Ricerche mat.; 59 (2010); 23-38.
  5. M. Filipczak, T. Filipczak, On homeomorphisms of density type topologies generated by functions, Tatra Mountains Mathematical Publications; 46 (2010); 7-13.
  6. M. Filipczak, W. Wilczyński, Strict density topology of the plane. Category case, Tatra Mountains Mathematical Publications; 46 (2010); 55-64.
  7. A. Karasińska, E. Wagner-Bojakowska, Some remarks on ρ-upper continuous functions, Tatra Mountains Mathematical Publications; 46 (2010); 85-89.
  8. A. Karasińska, E. Wagner-Bojakowska, Some remarks on nowhere monotone functions, Folia Mathematica; 16(1) (2009); 21-23.
  9. E. Wagner-Bojakowska, W. Wilczyński, Density topologies on the plane between ordinary and strong, Tatra Mountains Mathematical Publications; 44 (2009); 139-151.

2009.

  1. P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Mathematica Slovaca; 58 (2008); 605 – 620.
  2. M. Filipczak, M. Terepeta, y-continuous functions, Rendiconti del Circolo Matematico di Palermo; 58 (2009); 245 – 255.
  3. M. Filipczak, M. Terepeta, y-continuous functions and functions preserving y-density points, Tatra Mountains Mathematical Publications; 42 (2009); 175-186.
  4. M. Filipczak, E. Wagner-Bojakowska, Remarks on small sets on the real line, Tatra Mountains Mathematical Publications; 42 (2009); 73-80.
  5. G. Horbaczewska, On strongly countably continuous functions, Tatra Mountains Mathematical Publications; 42 (2009); 81-86.
  6. G. Horbaczewska, On topologies connected with Hausdorff measures, Real Analysis Exchange; 33(1) (2007/2008); 151-158.
  7. T. Poreda, W. Poreda, On the sums of two quasi-continuous functions with closed graphs, Real Analysis Exchange; 35(1) (2009/10); 1-10.
  8. R. Zduńczyk, Unilateral I-approximate limits of real functions, Real Analysis Exchange; 34(1) (2008/9); 105-114.

 

2008.

  1. V. Aversa, W. Wilczyński, Interior in the simple density topology, Topology and its Applications 155 (2008), 1974-1979.
  2. M. Filipczak, T. Filipczak, On f-density topologies, Topology and its Applications 155 (2008), 1980-1989.
  3. G. Horbaczewska, A. Skalski, The Banach Principle for ideal convergence in the classical and noncommutative context, Journal of Mathematical Analysis and Applications 342 (2008), 1332-1341.
  4. A. Karasińska, E. Wagner-Bojakowska, Nowhere monotone functions and microscopic sets, Acta Mathematica Hungarica 120 (2008), 235-248.
  5. W. Wilczyński, W. Wojdowski, Complete density topology, Indagationes Mathematicae – New Series 18(2) (2007), 295-303.
  6. M. Filipczak, T. Filipczak, Density topologies generated by funtions and by sequences, Tatra Mountains Mathematical Publications 40 (2008), 103-115.
  7. A. Grygiel, Polynomial Imaginary Decompositions for Finite Separable Extensins, Bulletin of the Polish Academy of Sciences Mathematics 56 No. 1, (2008), 9-13.
  8. J. Hejduk, On the densities generated by functions, Tatra Mountains Mathematical Publications 40 (2008), 133-141
  9. A. Karasińska, The one-to one restrictions of functions, Tatra Mountains Mathematical Publications 40 (2008), 161-169.
  10. G. Horbaczewska, A. Skalski, Banach principle for the ideal convergence, Real Analysis Exchange, 31st Summer Symposium Conference Reports, 2007, 21-26.
  11. W. Wilczyński, Wygoda i niewygoda tradycji, Materiały z konferencji Tradycja a nowoczesność, Archidecezjalne Wydawnictwo Łódzkie, Łódź 2008, 49-54.